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Density distribution of a confined polymer 

R COLLINS and A WRAGG 
Department of Mathematics, University of Salford, Salford M5 4WT, UK 

MS received 29 February 1972 

Abstract. Results are presented of numerical calculations of the spatial average density 
distribution inside a simple cubical box containing a random flight polymer. Various lengths 
of polymer are considered. Included is a correction to an isotherm calculation in an earlier 
paper. 

1. Introduction 

A random-flight polymer molecule confined in a rigid container exerts a pressure on the 
container wall resulting from the entropic force field produced near the wall. The 
theoretical interest of this simple system has been pointed out by S F Edwards and 
collaborators (eg Edwards and Freed 1969 to be referred to as I), who derived the high- 
density limiting form for the isotherm. More details of the isotherm were given by the 
authors in a second paper (Collins and Wragg 1969 to be referred to as 11). The results of 
the second paper have been shown to be inconsistent with the exact expression for the 
entropy of the system given in I. In the present note a revised version of the calculation 
is given leading to a corrected form for the isotherm. This differs numerically from the 
previous version but exhibits the same qualitative features. Of some theoretical interest 
is the actual monomer probability density within the container. This is also calculated 
in the present note. The results are presented in graphical form, illustrating the systematic 
change in monomer distribution as the polymer length becomes comparable with the 
length of the container edge. 

The system is idealized by the same simplifying assumptions as in I and 11, namely 
that the polymer molecule is treated as a simple random-flight gaussian trajectory, in 
which self-interaction terms and topological constraints are neglected. 

This type of approach has been used in a number of practical problems in polymer 
science, including that of the surface tension of a high-polymer solution (see for example 
Oosawa and Asakura 1954, Asakura and Oosawa 1958). 

2. Equation of state 

Suppose a polymer chain of total length L to be composed of monomers of length I, 
where 1 << L/l. The chain is confined in a cubical container of volume V = b3 with rigid 
walls. In the idealization of the problem dealt with here, molecular self-interactions of 
the chain are disregarded, as are any topological constraints. An ‘allowed configuration’ 
of the chain is any one lying wholly inside the container, and all such configurations are 
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treated as equally probable. If Q(L, V) denotes the total number of such configurations 
then the entropy S of the chain is given by 

S = 1nR (2.1) 
where temperature is to be measured in energy units, so that Boltzmann's constant is 
unity. To evaluate S,  each configuration is treated as a random-walk trajectory of 
length L in steps of length 1. For each allowed configuration there will be two such tra- 
jectories (one going each way). Let ri denote the initial point of an allowed trajectory. 
Then G(rf, rilL) d3rf denotes the probability that any random-flight trajectory of length s 
which starts at ri will (i) be an allowed trajectory and (ii) will finish in the element d3rf of 
volume surrounding rf. Let R(ri) denote the total number of allowed trajectories starting 
from ri .  Then 

R = 3 JV d3riRi. 

Let N(L) denote the total number of (unrestricted) trajectories of length L starting from 
any given point, and let W(ri) denote the probability that any random trajectory starting 
from ri stays wholly inside the box. Then 

and 

S = -1n2+ln/vd3ri-N ai 
N 

= ln(3N) + In J d3riW(ri) 
V 

= ln(constant) +In d3ri d3r,G(rf, vi/,!,). s, 
The constant additive first term may be omitted and we get 

S = In d3ri d3r,G(rf, rJL) 
J V  

as in paper I (equations (2.1) and (2.5)). S can be found either by evaluating (2.4) directly 
or by splitting into two terms, (i) the entropy of selection of the initial point ri and (ii) the 
average entropy of allowed trajectories which start at ri. If p(ri) d3ri is the probability 
of an allowed trajectory starting in d3ri then in this form 

d3rip(ri) In p(ri) + ( S(ri)) 

d3rip(ri) In p(ri) + J', d3rip(ri) In Jv d3r,G(rf, rJL). 
= -L 

In paper I1 this was evaluated taking all initial points to be equally likely, that is 
p(ri) = constant. In fact this is inconsistent with (2.4). Because of the actual symmetry 
between initial and final ends, we must take 

p(ri) = W(ri). (2.6) 
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Disregarding the multiplicative constant N ,  we can take 

f2 = d3r, d3riG(rf, rilL) 1” 
as in I (equation (2.5)), which gives 

that is, the correct form for the probability function for the initial point ri is in fact the 
(renormalized) probability function for the final end-point rf if a uniform distribution 
over ri had been assumed. From (2.8) and (2.5) 

= Jvd3rip(ri) In f2 

= 1nR 

in agreement with (2.1). As in paper I, we have 

S = constant+ln V+3 In 

where 

U = 81L/3b2 = 81L/3V2I3 

Defining 

then the equation of state is 

Since U cc V-’I3 this becomes 

d 
1 = -2u-(ln $). 

PV _ _  
T du 

For large U, relation (2.1 1) can be used as it stands, giving 

(2.9) 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

= $n2u(1 + Q  e-n2u/2 + . . .). (2.14) 
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The correcting term is less than 1 % for U greater than a limiting value given by 

2 800 
n2 9 

U = -In - N 0.896 

so that above this value we can write 

n2u n2L 
T 8 3b2 

1 = - = -  (0.9 < U) 
PV -- 

(2.15) 

(2.16) 

as before. For small U the convergence of the series in (2.11) becomes poor, and the 
Green function G has to be expressed as a set of ‘gaussian image’ functions as described 
in 11. The net result is 

where 
W 

E @ )  = J ~ T  1 dyerfc(y). (2.18) 
J x  

This can be evaluated using the asymptotic expansion (Abramowitz and Stegun 1965, 
P 300) 

and the result 

E(0) = Jn dy erfc(y) = 1 
0 

to give 

3u 15u2 1/2 u3/2 e - 4 / ~  

. . .). 
=2-2(;) + 4 J n  

For small U, we may neglect the term in e-4iu and write approximately 

+(U) N 2{1- (;) 
giving 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Relations (2.16) and (2.22) give the corrected asymptotic forms for the isotherm for large 
and small U respectively. In figure 1, the graphs for these two are compared with the 
correct curve, computed numerically by using the full forms of (2.14) or (2.17). Within 
the ranges quoted, one or the other of the asymptotic forms is correct to within 1.5%, 
the worst case occurring just above U = 0.81, when the exact curve lies midway between 
the two asymptotic forms. If figure 1 is compared with figure 2 of paper 11, it will be 
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Figure 1. Corrected equation of state for idealized polymer of length L in cubical container 
of volume V. The broken lines are asymptotic forms. 

seen that the corrected curve is qualitatively the same as before, the maximum dis- 
crepancy occurring at about U = 0.3 where the corrected curve gives a value of PV/T-  1 
about 20 % lower than before. 

3. Density distribution inside the container 

Consider a particular monomer in the polymer chain. Let s be the chain length from 
one end to this monomer. Let Q(r, slrr, ri) denote the number of allowed configurations 
in which this monomer lies in the volume element d3r surrounding the point r, given 
that the ends lie at ri and rf respectively. Then 

O(r, sJrf, ri) cc G(rf, rlL - s)G(r, rils). (3.1) 
Hence the probability density pL(r, s) at point r for this particular monomer s is given by 

pL(rls) 0~ f d3(rf, ri)G(rf, rlL - s)W, rib). (3.2) 

Now from the propagation property of the Green function we have 

J d3rc(rf,ri~-s)w,rils) = qrf,rilL) 

and so 

1 d3r d3rf d3riG(rf, rIL-s)G(r,rJs) = q L ) .  (3.3) 
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Hence the normalization constant for p(rls) is simply n(L) (for all s) and so (3.2) becomes 

(3.4) 

In particular the probability density D(rJ0) corresponding to a chain end can be obtained 
by putting s = 0 in (3.4) and using 

(3.5) 

It is more convenient for numerical computation to introduce the dimensionless 

G(r, rJ0)  = 6(r - ri) 

to give equation (2.3). 

coordinates (defined in paper 11) 

2 

and the dimensionless arc length 

8 
3b2 

r]=-s  

so that 

(3.7) 

-1 < u 1 , u 2 , u 3  < 1 and 0 < r]  < U. 
The Green functions are all separable into three factors, one for each component and 
the corresponding probability density pu(ulr]) is given by 

(3.8) PU(Ulr]) = P U h  IdPu(u2l r])Pu(u31 r ] )  

where 

where g is the dimensionless form of Green function defined in paper 11. For large r]  the 
appropriate form for g is 

(3.10) 
Using (3.10) in (3.9) gives the result 

The corresponding form for f (ulr])  when q is small is 

1 -U l + u  f (u lr ] )  = 1-erfc--erfc- dv dv 

(3.11) 

(3.12) 

3-v 3 + v  +erfc--erfc-+ . . . . 
dv dlr (3.13) 
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This result is obtained from the 'image' series given in II 

g(0, U') = g,(u, U') - g,(v, 2 - U') - g&, - 2 - U') + . . . (3.14) 
where 

(3.15) 

Since all the terms in (3.14) have the same 9, the explicit q label on the g has been omitted 
for conciseness. For the mid-point of the polymer chain, 9 = u/2 and (3.11) becomes 

1 
p,(u(*u) = - f 2 ( U l + U ) .  

*(U) 
(3.16) 

Since p,(ulq) factorizes in the form given by (3.8) it is sufficient to calculate the one di- 
mensional p,(ulg) given by (3.11) and (3.12). This was done numerically by a computer 
program for various values of polymer length L (different values of U) and for points 
along the chain given by ?/U = 0, $, + corresponding respectively to a monomer at one 
end, a distance L/4 from one end, and at the chain mid-point. The results are shown in 
figures 2 to 5, and show the progressive change in density distribution across the con- 
tainer from the case U = 81L/3b2 = 0.01 (where the polymer is small compared with the 

V 

V 

Figure 2. Variation of polymer density p,(ulq) across the container for (a) the ends, (b) 
quarter-points and (c) mid-point of the polymer chain for the case U = 81L/3b2 = 0.01 : 
dc = 0,113. 
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Figure 3. Variation of p,(olq) for the case U = 0.1 ; d ,  = 0,357. 

box) to u = 0.8 where the polymer is already effectively in the long-polymer limit. In 
this limit, the entropic field of force extends over the entire container and we have 

72 72v 
p,(vlO) = - cos - i 4 2  

Long polymer limit 4 (3.17) 
nt; 

p,(ul$.4) = cos2 -. i 2 

The probability density of a monomer near the middle of the chain close to the container 
wall is appreciably lower than that of an end monomer. Roughly speaking this could 
be expressed by saying that it is statistically easier for the chain end to penetrate the 
edges and corners of the box than the chain middle. This effect is shown by a positive 
value of d2p/dvZ (upward curvature) near U = k 1 for U = q/2,  and the effect remains 
noticeable down to the lowest values of U for which results have been computed, although 
it is only in the long-polymer limit that dp/du becomes zero at the container boundary 
for the chain mid-point. To facilitate comparison with the dimensions of the free (un- 
confined) polymer chain, the parameter d, is indicated in figures 2 to 5. This is defined by 

d -zX, (3.18) ‘ - b  
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V 

Figure 4. Variation of p.(ulq) for the case U = 0.4; df = 0.715 

where .Tf is the mean maximal projection of the free chain in any given direction. This 
has a value given by Volkenstein (1963, p 182-his b is our I ,  and his Zb is our L) of 
X, = 0.92J(Ll), that is 

(3.19) 

so that d, increases from a value of 0.113 at U = 0.01 to 1.01 at U = 0.8. It can be seen 
that d, (and hence 1,) gives a good measure of the effective ‘range’ of the entropic force 
field between the polymer and wall, indicated schematically by the shaded region at each 
end of the interval. At U = 0.8 the two regions just overlap in the middle, and it is at 
about this value (see figure 1) that the curve for PV/T- 1 changes over from the ‘short- 
polymer’ form given by (2.22) to the ‘long-polymer’ form given by (2.16). It is accordingly 
reasonable to describe this change to take place at about the point where the free polymer 
projected diameter is half as wide as the box. 

4. Discussion 

Both the density calculations and the revised eq ation of state are consistent with the 
description of the statistical behaviour of the system as falling into two fairly clearly 
defined types which can be described as ‘short-polymer’ and ‘long-polymer’ respectively. 
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Figure 5. Variation of p,(uJq) for the case U = 0.8; dr = 1.011. 

The transition between the two takes place quite smoothly over a small range ofpolymer 
lengths when the entropic force field between polymer and container wall just extends 
over the whole container volume. In qualitative terms this takes place, as far as it can 
be said to take place at any one point, when the statistical average free ‘diameter’ of the 
polymer is half the length of one edge of the cube. 
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